Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
نویسنده
چکیده
Using Coherent-State (CS) techniques, we prove a sampling theorem for holomorphic functions on the hyperboloid (or its stereographic projection onto the open unit disk D1), seen as a homogeneous space of the pseudo-unitary group SU(1, 1). We provide a reconstruction formula for bandlimited functions, through a sinc-type kernel, and a discrete Fourier transform from N samples properly chosen. We also study the case of undersampling of “quasi-bandlimited” functions and the conditions under which a partial reconstruction from N samples is still possible and the accuracy of the approximation.
منابع مشابه
Dft : Discrete Fourier Transform
A. Table of contents by sections: 1. Abstract (you’re reading this now) 2. Summary of the DFT (How do I do the homework?) 3. Review of continuous-time Fourier series 4. Bandlimited signals and finite Fourier series 5. Sampling theorem for periodic signals 6. Review of quirks of discrete-time frequency 7. Orthogonality and its significance 8. Discrete Fourier Transform (DFT) 9. Use of DFT to com...
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملBlock Based Compressive Sensing for GPR Images by Using Noiselet and Haar Wavelet
ompressive sensing (CS) is a new method for image sampling in contrast with well-known Nyquist sampling theorem. In addition to the sampling and sparse domain which play an important role in perfect signal recovery on CS framework, the recovery algorithm which has been used also has effects on the reconstructed image. In this paper, the performance of four recovery algorithms are compared accor...
متن کاملSampling Rate Conversion in the Discrete Linear Canonical Transform Domain
Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be realized by up-sampling, filtering, and down-sampling operations, which need large complexity. Although some efficient algorithms have been presented to do the sampling rate conversion, they all need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in the tim...
متن کاملA general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کامل